In the era of globalization and rapid information flow, the demand for efficient and accurate information, especially within academic institutions, is rising. Students often face challenges in accessing educational resources and real-time information, particularly outside official working hours. Existing online information services have limitations in providing continuous access. This research focuses on developing and evaluating a student information service chatbot system at Universitas Jenderal Achmad Yani Yogyakarta (UNJAYA) using the Long Short-Term Memory (LSTM) algorithm. The primary objective is to create a system that delivers real-time, accurate, and efficient information services to students. The Machine Learning Development Cycle (MLDC) is employed in the model development process, including stages such as data collection, processing, model training, evaluation, and implementation. The system's performance is tested using a questionnaire distributed to students, with responses measured on a Likert scale. The results demonstrate a chatbot with a 97.76% accuracy rate, 98.34% precision, and 97.76% recall. The overall system evaluation yielded an average score of 3.87, categorized as good. This research concludes that the LSTM-based chatbot successfully enhances information services at the Faculty of Engineering and Information Technology, providing an innovative solution to meet student needs in real-time
Copyrights © 2024