Djtechno: Jurnal Teknologi Informasi
Vol 5, No 3 (2024): Desember

SISTEM PREDIKSI TINGKAT KEMATANGAN BUAH TOMAT MENGGUANAKAN ARSITEKTUR VGG16

Fauzi, Rayhan Dzikri (Unknown)
Fachrie, Muhammad (Unknown)



Article Info

Publish Date
20 Dec 2024

Abstract

Penelitian ini bertujuan mengembangkan sistem prediksi kematangan buah tomat menggunakan metode Convolutional Neural Networks (CNN). Sistem ini dirancang untuk menggantikan penilaian manual yang sering kali kurang efisien dan akurat akibat subjektivitas manusia. Data penelitian berupa gambar buah tomat yang diperoleh dari platform Kaggle, dengan kategori matang, mentah, dan setengah matang. Dua model CNN, yaitu Simple CNN dan VGG16, diterapkan untuk melakukan klasifikasi. Setelah melalui proses pra-pemrosesan dan augmentasi data, kedua model dibor dan diuji. Hasil menunjukkan bahwa model VGG16 memberikan kinerja terbaik dengan akurasi 97,17% pada data latih dan 95,56% pada validasi data. Kesimpulannya, model VGG16 lebih unggul dalam prediksi kematangan buah tomat dan diharapkan mampu meningkatkan efisiensi serta akurasi penilaian kematangan buah di industri pertanian.

Copyrights © 2024






Journal Info

Abbrev

djtechno

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

Djtechno: Journal of Information Techhnology Research Jurnal ilmiah yang dikelola dan diterbitkan oleh Program Studi Teknologi Informasi, Fakultas Teknik dan Ilmu Komputer, Universitas Dharmawangsa, Medan, Indonesia. Jurnal Djtechno terbit pertama kali Vol 1. No.1 Juli Tahun 2020, jurnal ini ...