Jurnal Teknologi Dan Sistem Informasi Bisnis
Vol 6 No 4 (2024): Oktober 2024

Short-Term Cryptocurrency Price Prediction Using Bi-LSTM Method with Interactive Web

Andriansyach, Dimas Jordy (Unknown)
Sarwido, Sarwido (Unknown)
Mulyo, Harminto (Unknown)



Article Info

Publish Date
03 Nov 2024

Abstract

Short-term Bitcoin price prediction is a crucial aspect of transaction decision-making, especially for investors. In this study, a Bidirectional Long Short-Term Memory (Bi-LSTM) model was developed for short-term Bitcoin price prediction. The Bidirectional LSTM is designed to capture temporal context in both directions, allowing the model to process information from past and future time steps simultaneously. The model was validated using real-world data, including Bitcoin stock price datasets. The results show that the model achieved high accuracy, with a Root Mean Square Error (RMSE) of 56.90 on the training data and 157.35 on the test data, along with a Mean Absolute Error (MAE) of 366.40 and 486.63, respectively. The Bidirectional Least Square Memory model accurately predicted Bitcoin prices over a specific time period. This application integrates the model into a web application, enabling users to obtain real-time Bitcoin price predictions through a user-friendly interface.

Copyrights © 2024






Journal Info

Abbrev

jteksis

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Jurnal Teknologi dan Sistem Informasi Bisnis merupakan Jurnal yang diterbitkan oleh Prodi Sistem Informasi Universitas Dharma Andalas untuk berbagai kalangan yang mempunyai perhatian terhadap perkembangan teknologi komputer, baik dalam pengertian luas maupun khusus dalam bidang-bidang tertentu yang ...