Jurnal Sisfokom (Sistem Informasi dan Komputer)
Vol. 13 No. 3 (2024): NOVEMBER

Water Level Classification for Detect Flood Disaster Status Using KNN and SVM

Akbar, Jiwa (Unknown)
Setyo Yudono, Muchtar Ali (Unknown)



Article Info

Publish Date
13 Nov 2024

Abstract

Flooding occurs when the water's surface elevation exceeds the average level, overflowing river water and creating inundation in low-lying areas. Early warning for potential floods significantly reduces losses, such as human casualties and property damage. In this context, the flood disaster classification system uses water surface elevation data from the Water Resources Agency to predict the likelihood of floods using the K-Nearest Neighbors (KNN) Algorithm. This research aims to classify flood status based on water surface elevation using the K-Nearest Neighbors and Support Vector Machine(SVM) methods in the Ciliwung River. The study results indicate that the SVM algorithm outperforms the KNN algorithm. The SVM algorithm used parameter C ranging from 1 to 10 in the scenarios, and the RBF kernel achieved 100% accuracy. On the other hand, the KNN algorithm achieved 100% accuracy only for K values of 1, 2, 3, 4, and 5 in scenarios where K ranged from 1 to 10.

Copyrights © 2024






Journal Info

Abbrev

sisfokom

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

Jurnal Sisfokom merupakan singkatan dari Jurnal Sistem Informasi dan Komputer. Jurnal ini merupakan kolaborasi antara sivitas akademika STMIK Atma Luhur dengan perguruan tinggi maupun universitas di Indonesia. Jurnal ini berisi artikel ilmiah dari peneliti, akademisi, serta para pemerhati TI. Jurnal ...