Pena : Jurnal Ilmu Pengetahuan dan Teknologi
Vol. 38 No. 2 (2024): PENA SEPTEMBER 2024

Analisis Perbandingan Model Jaringan Saraf Tiruan dan Support Vector Machine dalam Memprediksi Indeks Harga Saham Gabungan

Gunawan, Gunawan (Unknown)
Andriani, Wresti (Unknown)
Wibowo, Septian Ari (Unknown)



Article Info

Publish Date
07 Nov 2024

Abstract

The Jakarta Composite Index (IHSG) is a key indicator that reflects the performance of the stock market in Indonesia. It is often used by investors, analysts, and decision-makers to assess economic conditions and make investment decisions. However, the fluctuating and dynamic nature of the stock market makes predicting the IHSG a significant challenge. This study compares the effectiveness of Neural Network (NN) and Support Vector Machine (SVM) with optimization methods such as Particle Swarm Optimization (PSO) and Evolutionary Algorithm (EVO) in predicting stock prices. The results show that the combination of SVM with EVO provides the best prediction accuracy with the lowest error values (RMSE: 0.07, MAE: 0.09, MSE: 0.004). In contrast, NN with PSO and EVO showed higher prediction errors, indicating lower accuracy levels. These findings highlight the potential of optimization methods in enhancing the performance of stock prediction models, with SVM+EVO being the most effective combination.

Copyrights © 2024






Journal Info

Abbrev

pena

Publisher

Subject

Economics, Econometrics & Finance Law, Crime, Criminology & Criminal Justice Medicine & Pharmacology Other

Description

PENA: JURNAL ILMU PENGETAHUAN DAN TEKNOLOGI [P-ISSN-0854-7521 | E-ISSN-2301-6450 | DOI 10.31941] merupakan jurnal ilmiah bidang iptek yang bersumber dari hasil kajian dan penelitian. Jurnal PENA menyajikan informasi mutakhir hasil kajian dan penelitian bidang ilmu pengetahuan dan teknologi, yang ...