OKTAL : Jurnal Ilmu Komputer dan Sains
Vol 3 No 09 (2024): OKTAL : Jurnal Ilmu Komputer Dan Sains

Literatur Review: Klasifikasi Penyakit Jantung Koroner Menggunakan Extreme Learning Machine

Marwan Kosasih (Unknown)
Sahrul Ramadhani (Unknown)
Arni Susanti Ndruru (Unknown)
Reihan Renaldi (Unknown)
Muhamad Rahmat Fadila (Unknown)



Article Info

Publish Date
15 Nov 2024

Abstract

Coronary Heart Disease (CHD) is a leading cardiovascular disease and one of the primary causes of death worldwide. Early and accurate classification of CHD can aid in effective prevention and appropriate treatment. This study aims to develop a CHD classification model using the Extreme Learning Machine (ELM) method. The research methodology includes gathering CHD data from the Cleveland Heart Disease Dataset, data preprocessing, dividing data into training and testing sets, and implementing the ELM algorithm for classification. Additionally, a literature review was conducted to identify related studies on heart disease classification using machine learning methods. The results indicate that the ELM model can classify CHD effectively and efficiently compared to other methods such as Support Vector Machine (SVM) and Artificial Neural Network (ANN). Therefore, ELM presents a promising alternative for early CHD diagnosis.

Copyrights © 2024






Journal Info

Abbrev

oktal

Publisher

Subject

Astronomy Chemistry Computer Science & IT Electrical & Electronics Engineering Social Sciences

Description

1. Komputasi Lunak, 2. Sistem Cerdas Terdistribusi, Manajemen Basis Data, dan Pengambilan Informasi, 3. Komputasi evolusioner dan komputasi DNA/seluler/molekuler, 4. Deteksi kesalahan, 5. Sistem Energi Hijau dan Terbarukan, 6. Antarmuka Manusia, 7. Interaksi Manusia-Komputer, 8. Hibrida dan ...