IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 4: December 2024

A novel pairwise based convolutional neural network for image preprocessing enhancement

Ravi, Chaitra (Unknown)
Gaddadevara Matt, Siddesh (Unknown)



Article Info

Publish Date
01 Dec 2024

Abstract

Wildfires are untamable and devastating forces that impact both urban and rural regions. While predicting wildfires is challenging, efforts are made to mitigate the damage they inflict. The previous researches have limitations such as not being able to find a small region of fire in the dataset. In this research, pairwise region-based convolutional neural network (PR-CNN) is proposed for wildfire detection. The dataset used for wildfire detection is the fire luminosity airborne-based machine learning evaluation (FLAME) dataset that is pre-processed through normalization and hue, saturation, and lightness (HSV) color space to improve the image quality. Pre-processed images are taken as input to region-based convolutional neural network (R-CNN) for detection, the R-CNN has a region proposal layer that is enhanced by pairwise region and named PR-CNN. These wrapped images are fed into CNN architecture to extract and features to detect wildfire. Additionally, post processing technique like soft-non-maximum suppression (NMS) is utilized to eliminate the duplicate detection from PR-CNN for enhancing the detection accuracy. The proposed method achieves a higher accuracy of 97.44%, a precision of 97.32%, recall of 97.31%, and f1-score of 96.67%, which is comparatively superior to the existing algorithms like recurrent neural network (RNN), and R-CNN.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...