IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 1: February 2025

Convolutional neural network modelling for autistic individualized education chatbot

Hamzah, Raseeda (Unknown)
Jamil, Nursuriati (Unknown)
Ahmad, Nor Diana (Unknown)
Syed Zainal Ariffin, Syed Mohd Zahid (Unknown)



Article Info

Publish Date
01 Feb 2025

Abstract

The traditional education system for autistic kids needs integration with computer technology that embraces artificial intelligence to help school instructors and management. An application that enables the teacher to retrieve information from a trusted source is essential since the information is only sometimes available on time. Thus, developing a chatbot application that utilizes natural language processing can enhance the management of autistic schools and will help individualized education for autistic students. This research uses a deep learning model that utilizes a convolutional neural network to develop a chatbot as a teaching assist tool for teachers. The results show that the chatbot has achieved ˜0.03% loss when trained with different epoch numbers. In terms of usability, the chatbot achieves mean system usability scores of 80.48 ± 13.03. This may open opportunities for more effective individualized education for students with special needs and increase the potential to improve inclusive education for disabled students. It is useful to include future actions that enable the simplification of the use of this chatbot tool in a wide range of contexts. To close the education gap for children with disabilities, chatbots could help people with communication disabilities and could also significantly enhance the rate of communication.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...