IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 1: February 2025

Method for developing and partitioning graph-based data warehouses using association rules

Labzioui, Redouane (Unknown)
Letrache, Khadija (Unknown)
Ramdani, Mohammed (Unknown)



Article Info

Publish Date
01 Feb 2025

Abstract

The evolution of modern databases has led to a variety of not only structured query language (NoSQL) models, particularly graph-oriented-databases. This growth has encouraged businesses to explore graph-based business intelligence (BI) solutions. This paper explores three essential aspects in the domain of graph warehouse: the establishment of efficient graph warehouses, the significance of data historization, and the development of effective strategies for graph partitioning. It starts by building a BI system within a graph database. Subsequently, the paper emphasizes the pivotal role of data historization, highlighting the slowly graph changing dimension (SGCD) approach as a versatile framework for accommodating varied dimensional changes, additionally; the paper introduces a novel partitioning strategy utilizing association rules algorithms, for optimized and scalable graph warehouse management.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...