International Journal of Informatics and Communication Technology (IJ-ICT)
Vol 14, No 1: April 2025

Collaborative singular value decomposition with user-item interaction expansion for first-time user and item recommendations

Loukili, Manal (Unknown)
Messaoudi, Fayçal (Unknown)



Article Info

Publish Date
01 Apr 2025

Abstract

In today's digital landscape, recommendation systems are essential for delivering personalized content and improving user engagement across various platforms. However, a key challenge known as the cold-start problem—where limited user-item interaction data hampers the ability to generate accurate recommendations—remains a significant obstacle, particularly for new users and items. To address this issue, this paper introduces an enhanced methodology combining collaborative singular value decomposition (Co-SVD) with an innovative approach to reduce data sparsity. The objective of this research is to improve recommendation accuracy in sparse data environments by leveraging collaborative information in the user-item interaction matrix. Extensive experiments conducted on an e-commerce dataset validate the superiority of the proposed Enhanced Co-SVD model over traditional Co-SVD, content-based filtering, and random recommendation methods across multiple metrics. Our approach demonstrates particular strength in cold-start scenarios, providing precise recommendations with minimal user interaction data. These findings have important implications for e-marketing, personalized user experiences, and overall business success in online environments.

Copyrights © 2025






Journal Info

Abbrev

IJICT

Publisher

Subject

Computer Science & IT

Description

International Journal of Informatics and Communication Technology (IJ-ICT) is a common platform for publishing quality research paper as well as other intellectual outputs. This Journal is published by Institute of Advanced Engineering and Science (IAES) whose aims is to promote the dissemination of ...