Geoplanning : Journal of Geomatics and Planning
Vol 11, No 2 (2024)

Groundwater Nitrate Modeling in Tehran Metropolis Using Artificial Neural Network and Kriging Methods

Nickbeen, Fatemeh (Unknown)
Salmanmahiny, Abdolrassoul (Unknown)



Article Info

Publish Date
29 Nov 2024

Abstract

This study examined the relationship between groundwater quality and land use in Tehran. For this purpose, the possible relationship between the types of land uses and the concentration of nitrate in groundwater parameters was modelled using a Multi-Layer Perceptron (MLP) artificial neural network in geographic information system (GIS). The optimal network model was selected based on the mean root mean square error (RMSE) and correlation coefficient. Interpolation through Kriging was also performed to compare its results with those of the predicted model derived from an artificial neural network. The results showed that the neural network has a high capability for predicting and modelling groundwater nitrate concentration compared to the Kriging method. The high accuracy (RMSE: 0.003) of the neural network makes it a useful tool in relevant management issues. Our results of network sensitivity analysis were similar to scientific findings regarding the factors influencing the formation of nitrate in groundwater. Model outputs in the form of maps, tables, and graphs allowed the study of the role of each variable and the extent of its impact on groundwater quality. Performing various simulations and modelling of groundwater pollution provides an effective benchmark towards optimizing the management, control, planning, and decision-making in urban areas and can lead to economic and environmental savings.

Copyrights © 2024






Journal Info

Abbrev

geoplanning

Publisher

Subject

Earth & Planetary Sciences

Description

Geoplanning, Journal of Geomatics and Planning (E-ISSN: 2355-6544), is an open access journal (e-journal) focusing on the scientific works in the field of applied geomatics technologies for urban and regional planning including GIS, Remote Sensing and Satellite Image Processing. This journal is ...