Bulletin of Electrical Engineering and Informatics
Vol 14, No 1: February 2025

The use of generative adversarial network as a domain adaptation method for cross-corpus speech emotion recognition

Farhan Fadhil, Muhammad (Unknown)
Zahra, Amalia (Unknown)



Article Info

Publish Date
01 Feb 2025

Abstract

The research of speech emotion recognition (SER) is growing rapidly. However, SER still faces a cross-corpus SER problem which is performance degradation when a single SER model is tested in different domains. This study shows the impact of implementing a generative adversarial network (GAN) model for adapting speech data from different domains and performs emotion classification from the speech features using a 1D convolutional neural network (CNN) model. The results of this study found that the domain adaptation approach using a GAN model could improve the accuracy of emotion classification in speech data from 2 different domain such as the ryerson audio-visual database of emotional speech and song (RAVDESS) speech corpus and the EMO-DB speech corpus ranging from 10.88% to 28.77%, with the highest average performance increase across three different class balancing method reaching 18.433%.

Copyrights © 2025






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...