Journal of Computing Theories and Applications
Vol. 2 No. 3 (2025): JCTA 2(3) 2025

A Quantum Circuit Learning-based Investigation: A Case Study in Iris Benchmark Dataset Binary Classification

Akrom, Muhamad (Unknown)
Herowati, Wise (Unknown)
Setiadi, De Rosal Ignatius Moses (Unknown)



Article Info

Publish Date
05 Jan 2025

Abstract

This study presents a Quantum Machine Learning (QML) architecture for perfectly classifying the Iris flower dataset. The research addresses improving classification accuracy using quantum models in machine-learning tasks. The objective is to demonstrate the effectiveness of QML approaches, specifically the Variational Quantum Circuit (VQC), Quantum Neural Network (QNN), and Quantum Support Vector Machine (QSVM), in achieving high performance on the Iris dataset. The proposed methods result in perfect classification, with all models attaining accuracy, precision, recall, and an F1-score of 1.00. The main finding is that the QML architecture successfully achieves flawless classification, contributing significantly to the field. These results underscore the potential of QML in solving complex classification problems and highlight its promise for future applications across various domains. The study concludes that QML techniques can offer transformative solutions in machine learning tasks, particularly those leveraging VQC, QNN, and QSVM.

Copyrights © 2025






Journal Info

Abbrev

jcta

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Journal of Computing Theories and Applications (JCTA) is a refereed, international journal that covers all aspects of foundations, theories and the practical applications of computer science. FREE OF CHARGE for submission and publication. All accepted articles will be published online and accessed ...