Kresna: Jurnal Riset dan Pengabdian Masyarakat
Vol 4 No 1 (2024): Jurnal KRESNA Mei 2024

Prediksi Harga Saham Twitter Menggunakan Algoritma Support Vector Machine

Satia Nurpatih (Unknown)
Bruri Trya Sartana (Unknown)



Article Info

Publish Date
31 May 2024

Abstract

Dalam penelitian ini, sistem algoritma Support Vector Machine (SVM) digunakan untuk memprediksi harga saham Twitter dengan menggunakan dataset yang terdiri dari 1184 record. Fokus utama penelitian ini adalah mencapai tingkat akurasi prediksi yang tinggi, yang diukur menggunakan Root Mean Square Error (RMSE). Dataset yang digunakan diperoleh dari website macrotrends.com dan mencakup harga saham Twitter selama periode waktu yang signifikan. Masalah penelitian secara spesifik adalah mengoptimalkan parameter C dalam model SVM untuk meningkatkan kemampuan model dalam menggambarkan kompleksitas hubungan antara faktor atmosfer dan perubahan harga saham. Dengan kata lain, penelitian ini berupaya untuk mengatasi tantangan dalam menciptakan prediksi yang akurat terhadap perubahan harga saham Twitter dengan memanfaatkan informasi atmosfer yang relevan dan memperhatikan keterkaitan yang kompleks antara faktor-faktor tersebut. Evaluasi model dilakukan menggunakan RMSE pada kumpulan data pengujian yang tidak digunakan selama pelatihan. Hasil eksperimen menunjukkan bahwa model SVM dengan dataset 1184 record memberikan nilai RMSE sebesar 0,039 yang mencerminkan tingginya akurasi prediksi harga saham. Kesimpulan dari penelitian ini adalah bahwa model SVM, ketika diterapkan pada dataset yang cukup besar, dapat memberikan prediksi harga saham Twitter yang responsif terhadap dinamika pasar. Hasil evaluasi model menunjukkan Root Mean Square Error (RMSE) yang rendah, mengindikasikan tingkat akurasi yang tinggi dalam menggambarkan pergerakan harga saham. Hal ini memberikan dasar yang kuat bagi pengambilan keputusan investasi. Prediksi yang dihasilkan oleh model ini membantu dalam memahami kemampuan algoritma sebagai vektor pendukung dalam konteks estimasi harga saham. Implikasi dari penelitian ini mencakup potensi penggunaan praktis model ini untuk mendukung pengambilan keputusan investasi di pasar saham yang dinamis. Ini menggambarkan luaran penelitian berupa model data yang efektif dalam menganalisis dan memprediksi pergerakan harga saham, dengan potensi aplikasi praktis dalam konteks pengambilan keputusan investasi.

Copyrights © 2024






Journal Info

Abbrev

Kresna

Publisher

Subject

Humanities Computer Science & IT Economics, Econometrics & Finance Electrical & Electronics Engineering Social Sciences

Description

Jurnal KRESNA adalah media publikasi online hasil penelitian yang diterbitkan oleh Direktorat Riset dan Pengabdian kepada Masyarakat (DRPM), Universitas Budi Luhur. Topik pada Jurnal ini adalah: - Ilmu Komputer dan Teknik Elektro - Ekonomi dan Bisnis - Komunikasi dan Desain Kreatif - Ilmu Sosial dan ...