Journal of Electronics, Electromedical Engineering, and Medical Informatics
Vol 7 No 1 (2025): January

Precise Lung Cancer Prediction using ResNet – 50 Deep Neural Network Architecture

Lakide, Vedavrath (Unknown)
Ganesan, V. (Unknown)



Article Info

Publish Date
11 Nov 2024

Abstract

The fact that lung cancer continues to be the leading cause of cancer-related death around the world emphasizes how important it is to improve diagnostic methods. Using computed tomography (CT) images and deep learning techniques, the goal of this study is to improve the classification of lung cancer. EfficientNetB1 and Inception V3 are two well-known convolutional neural network (CNN) architectures that we compare the performance of our modified ResNet50 architecture against in order to determine how well it performs in the classification of lung nodules. Analyzing the effects of various preprocessing and hyperparameter optimization methods on model performance is one of our research objectives. Another is to determine how well these models improve diagnostic accuracy. An extensive collection of CT images with annotated lung nodule classifications make up the utilized dataset. To ensure accurate model training and improve image quality, a rigorous preprocessing pipeline is used. Using the Keras Sequential framework, the models are trained with optimal dropout rates and L2 regularization to prevent overfitting. Metrics like accuracy, loss, and confusion matrices are used to evaluate model performance. A comprehensive evaluation of the model's sensitivity and specificity across various thresholds is also provided by means of the Free-Response Receiver Operating Characteristic (FROC) curve and Area Under the Curve (AUC) values. The adjusted ResNet50 model showed prevalent order exactness, accomplishing a precision of 98.1% and an AUC of 0.97, in this way beating different models in the review. EfficientNetB1 had an accuracy of 96.4 percent and an AUC of 0.94, while Inception V3 had an accuracy of 95.8 percent and an AUC of 0.93, as a comparison. Based on these findings, it appears that the accuracy of lung cancer detection from CT images can be significantly improved by combining specialized preprocessing and training methods with advanced CNN architectures. With potential implications for clinical practice and future research directions, this study offers a promising strategy for increasing lung cancer diagnostic accuracy.

Copyrights © 2025






Journal Info

Abbrev

jeeemi

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

The Journal of Electronics, Electromedical Engineering, and Medical Informatics (JEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas ...