Journal of Electronics, Electromedical Engineering, and Medical Informatics
Vol 6 No 4 (2024): October

Cybersentinel: The Cyberbullying Detection Application Based on Machine Learning and VADER Lexicon with GridSearchCV Optimization

Ernawati, Siti (Unknown)
Frieyadie, Frieyadie (Unknown)
Yulia, Eka Rini (Unknown)



Article Info

Publish Date
12 Oct 2024

Abstract

Cyberbullying is becoming an increasingly troubling issue in today's digital age, with serious impacts on the well-being of individuals and society as a whole. With the number of social media users continuously rising, there is an urgent need to develop effective solutions for detecting cyberbullying. This urgency negatively affects the well-being of individuals, especially children and adolescents. The Big Data era also brings many new challenges, including the ability of organizations to manage, process, and extract value from available data to generate useful information. The aim of this research is to develop Cybersentinel, a cyberbullying detection application that combines Machine Learning and VADER Lexicon approaches to improve classification accuracy. It involves comparing several Machine Learning algorithms optimized using the GridSearchCV technique to find the best combination of parameters. The dataset used consists of social media comments labeled as bullying and non-bullying. The successfully developed model uses the Support Vector Machnine algorithm, achieving a best accuracy of 98.83%. The system is developed using Python with the Streamlit framework. This application development follows the Design Science Research (DSR) approach, which integrates principles, practices, and procedures to facilitate problem-solving and support the design and creation of applications. Testing is conducted using blackbox testing. The results show that parameter optimization using GridSearchCV can significantly enhance model performance, and applying the DSR method allows for the development of Cybersentinel tailored to specific needs. Thus, Cybersentinel provides an effective solution for detecting cyberbullying and contributes to improving the safety of social media users.

Copyrights © 2024






Journal Info

Abbrev

jeeemi

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

The Journal of Electronics, Electromedical Engineering, and Medical Informatics (JEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas ...