METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi
Vol. 8 No. 2 (2024): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi

Sistem Pendeteksi Tingkat Kesegaran Daging Ayam pada Citra Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Android

Naturizal, Rayhan (Unknown)
Fuadi, Wahyu (Unknown)
Rosnita, Lidya (Unknown)



Article Info

Publish Date
31 Oct 2024

Abstract

This research develops a chicken meat freshness detection system based on image processing, implemented on an Android platform using the Convolutional Neural Network (CNN) method optimized with TensorFlow Lite. The system classifies chicken meat into three categories: fresh, less fresh, and rotten. The CNN model uses 32 filters to enhance feature extraction from the meat images. Testing on 30 samples, with each category tested 10 times, showed an accuracy of 90%, with 27 correct detections and 3 errors in the less fresh category. While the system effectively identifies fresh and rotten categories, there is a challenge in distinguishing the less fresh category due to its ambiguous visual characteristics. One limitation is the lack of a bounding box, causing the application to still provide detection results even when the scanned object is not chicken meat. This application is specifically designed to detect chicken meat pieces, so it is not recommended for use outside this context.

Copyrights © 2024






Journal Info

Abbrev

methomika

Publisher

Subject

Computer Science & IT Economics, Econometrics & Finance

Description

Sistem Informasi Sistem Informasi Manajemen Sistem Informasi Akuntansi Manajemen Basis Data Pengembangan Aplikasi Web dan Mobile Sistem Pendukung Keputusan Desain Grafis dan Multimedia Audit Sistem Informasi Topik-topik lain yang Relevan dengan bidang ilmu Manajemen Informatika Topik-topik lain yang ...