Journal of Information System and Computer
Vol. 4 No. 2 (2024): Desember 2024

PREDIKSI TINGKAT KELULUSAN MENGGUNAKAN K-MEANS PADA UNIVERSITAS XYZ

Dede Brahma Arianto (Unknown)
Erfiana Julietta Sembiring (Unknown)



Article Info

Publish Date
31 Dec 2024

Abstract

On-time graduation rate is an important indicator in higher education. This study uses the K-Means Clustering algorithm to cluster students based on academic attributes, such as length of study, number of credits, Semester Achievement Index (IPS), and Cumulative Achievement Index (IPK). The dataset used consists of 4483 student data from the Informatics Study Program. The clustering results show three main groups: (1) high-achieving students with an average GPA of 3.77 and the shortest length of study, (2) students with stable performance (average GPA of 3.51), and (3) at-risk students with an average GPA of 3.20 and the longest length of study. Evaluation with Silhouette Score produces a value of 0.1972, indicating weak cluster separation, but providing insight into graduation patterns. This study is expected to help educational institutions develop data-based intervention strategies to improve student graduation rates.

Copyrights © 2024






Journal Info

Abbrev

JISTER

Publisher

Subject

Computer Science & IT

Description

Jurnal Jister menyediakan sebuah forum untuk menerbitkan artikel penelitian asli , artikel review dari kontributor , dan berita teknologi baru yang berkaitan dengan sistem informasi. Jurnal ini menampung artikel asli penelitian, artikel review yang meliputi, serta tidak terbatas pada : 1. Bidang ...