Journal of Information System and Computer
Vol. 4 No. 2 (2024): Desember 2024

PENERAPAN K-MEANS CLUSTERING PADA DATA PEMBAYARAN TAGIHAN KARTU KREDIT UNTUK MENGANALISIS POTENSI FRAUD

Vilan Purnama (Unknown)
Dede Brahma Arianto (Unknown)



Article Info

Publish Date
31 Dec 2024

Abstract

Credit cards are non-cash payment tools that use cards issued by banks. Fraud in credit card payment transactions is a significant issue for the banking and financial industry. With the increasing number of digital transactions, early detection of potential fraud is essential to protect consumers and financial institutions. One of the techniques that can be used is clustering, which allows data to be grouped based on similar characteristics without requiring specific labels. This study aims to analyze potential fraud in credit card bill payments using the K-Means Clustering approach, with model evaluation results including a Silhouette Score of 0.5211 and a Davies-Bouldin Index (DBI) score of 0.8293. This research is expected to provide deeper insights into the use of K-Means Clustering for detecting potential fraud. The study is not limited to identifying fraud in bank data alone but can also be applied in various sectors that are vulnerable to unauthorized or suspicious transactions.

Copyrights © 2024






Journal Info

Abbrev

JISTER

Publisher

Subject

Computer Science & IT

Description

Jurnal Jister menyediakan sebuah forum untuk menerbitkan artikel penelitian asli , artikel review dari kontributor , dan berita teknologi baru yang berkaitan dengan sistem informasi. Jurnal ini menampung artikel asli penelitian, artikel review yang meliputi, serta tidak terbatas pada : 1. Bidang ...