JSAI (Journal Scientific and Applied Informatics)
Vol 8 No 1 (2025): Januari

Implementasi Algoritma K-Nearest Neighbors Untuk Klasifikasi Spam Email

Diani Putri Kusumaningrum (Unknown)
Ahmad Turmudi Zy (Unknown)
Suprapto (Unknown)



Article Info

Publish Date
01 Jan 2025

Abstract

In modern life, internet access has become essential for communication. Email is one of many communication tools. Cyberattacks such as ransomware, phishing, and cryptojacking continue to evolve and are difficult to detect by security systems as technology rapidly advances. Therefore, this study uses email spam as the subject of research. The aim of this study is to implement and calculate the accuracy of the K-Nearest Neighbors (KNN) algorithm in classifying spam emails with ham and spam labels. An accuracy of 85%, precision of 87%, recall of 93%, and F1-score of 90% were obtained from tests conducted with an 80% training data and 20% testing data ratio. The results show that the K-Nearest Neighbors algorithm can effectively classify spam emails.

Copyrights © 2025






Journal Info

Abbrev

JSAI

Publisher

Subject

Computer Science & IT

Description

Jurnal terbitan dibawah fakultas teknik universitas muhammadiyah bengkulu. Pada jurnal ini akan membahas tema tentag Mobile, Animasi, Computer Vision, dan Networking yang merupakan jurnal berbasis science pada informatika, beserta penelitian yang berkaitan dengan implementasi metode dan atau ...