Jurnal Sains Teknologi dan Lingkungan (JSTL)
Vol. 10 No. 4 (2024): JURNAL SAINS TEKNOLOGI & LINGKUNGAN

Klasifikasi Multiclass Pada Sound Healing menggunakan Algoritma Pseudo Neareset Neighbor

Ramadhani, Cipta (Unknown)
Made Budi Suksmadana , I (Unknown)
Yadnya, Made Sutha (Unknown)



Article Info

Publish Date
20 Dec 2024

Abstract

Sound healing, or commonly referred to as music therapy using Acoustic Sound for Wellbeing (ASW) equipment such as drums, gongs, bells, and other types that produce specific frequency vibrations, is used in the medical field to help patients experiencing anxiety or depression. Currently, research on sound healing focuses on methods to identify appropriate frequencies that influence stress and anxiety experienced by patients. This study presents the implementation of the Pseudo-Nearest Neighbour (P-NN) algorithm for classifying multiclass ASW. In general, the P-NN algorithm performs better for multiclass scenarios, particularly in identifying outlier data in each class. Furthermore, P-NN provides better performance for all confusion matrix parameters. Using two classes (Gong and Singing Bowl), the accuracy of the P-NN algorithm exceeds 92%. This demonstrates that the P-NN algorithm can provide better performance in handling outliers within the ASW dataset.

Copyrights © 2024






Journal Info

Abbrev

jstl

Publisher

Subject

Agriculture, Biological Sciences & Forestry Computer Science & IT Public Health

Description

Jurnal Sains Teknologi dan Lingkungan (JSTL), merupakan media untuk publikasi tulisan asli yang berkaitan dengan sains teknologi dan lingkungan baik dalam Bahasa Indonesia maupun Bahasa Inggris. Jurnal Sains Teknologi dan Lingkungan (JSTL) merupakan jurnal ilmiah terbitan berkala dua kali setahun ...