JOURNAL OF APPLIED INFORMATICS AND COMPUTING
Vol. 8 No. 2 (2024): December 2024

Application of MobileNetV2 and SVM Combination for Enhanced Accuracy in Pneumonia Classification

Meindiawan, Eka Putra Agus (Unknown)
Muljono, Muljono (Unknown)



Article Info

Publish Date
05 Nov 2024

Abstract

Pneumonia is a very common respiratory infection in low- and middle-income countries and is still a leading cause of death, especially among children under five years old. Modern technologies, such as machine learning, offer significant potential in improving the automatic detection of pneumonia through chest X-ray (CXR) image analysis. This study aims to develop a more accurate pneumonia diagnosis system by evaluating various feature extraction methods. CXR datasets of pneumonia patients were resized to 180x180 pixels and balanced using the SMOTE-Tomek technique. Three main approaches were investigated: direct classification using Support Vector Machine (SVM) on the SMOTE-Tomek balanced dataset, feature extraction using Sobel edge detection followed by SVM classification, and feature extraction using MobileNet-V2 followed by SVM classification. The results showed that Scheme 1 achieved 97% accuracy, Scheme 2 decreased to 95%, and Scheme 3 achieved the highest accuracy at 98%. The lower accuracy in Scheme 2 is due to the limitations of Sobel edge detection, which reduces the key features in the CXR image. On the other hand, the improvement in Scheme 3 is due to the effective feature extraction capability of MobileNet-V2. In conclusion, the choice of feature extraction method plays an important role in determining the accuracy of an automated diagnostic system. This study builds on existing research and is expected to make a significant contribution to the development of more accurate and efficient automated diagnostic systems, which can ultimately help reduce pneumonia-related mortality.

Copyrights © 2024






Journal Info

Abbrev

JAIC

Publisher

Subject

Computer Science & IT

Description

Journal of Applied Informatics and Computing (JAIC) Volume 2, Nomor 1, Juli 2018. Berisi tulisan yang diangkat dari hasil penelitian di bidang Teknologi Informatika dan Komputer Terapan dengan e-ISSN: 2548-9828. Terdapat 3 artikel yang telah ditelaah secara substansial oleh tim editorial dan ...