JOURNAL OF APPLIED INFORMATICS AND COMPUTING
Vol. 8 No. 2 (2024): December 2024

Random Forest Algorithm for Toddler Nutritional Status Classification Website

Fatmawati, Maylia (Unknown)
Herlambang, Bambang Agus (Unknown)
Nada, Noora Qotrun (Unknown)



Article Info

Publish Date
12 Nov 2024

Abstract

Accurate data processing is essential for classifying toddler nutritional status on a website platform. The Random Forest algorithm is particularly effective in this context due to its ability to manage large datasets and mitigate overfitting. This study leverages Flask as the web framework to ensure responsiveness and adaptability, optimizing the data processing experience for users. Using secondary data comprising 120,999 records, the research aims to answer: "What factors affect the accuracy of the Random Forest model in classifying toddler nutritional status?" Model evaluation yielded excellent performance metrics, with accuracy, precision, recall, and F1-score values of 99.91%, 100%, 100%, and 100%, respectively. These results highlight the informative attributes in the dataset, such as age, gender, and height, that enhance classification accuracy. The Flask-based website enables users, such as healthcare professionals and policymakers, to input essential data points and receive instant classification results, thereby supporting prompt and informed responses to nutritional health issues. This study confirms that the Random Forest algorithm, combined with an intuitive web interface, effectively classifies toddler nutritional status with high accuracy.

Copyrights © 2024






Journal Info

Abbrev

JAIC

Publisher

Subject

Computer Science & IT

Description

Journal of Applied Informatics and Computing (JAIC) Volume 2, Nomor 1, Juli 2018. Berisi tulisan yang diangkat dari hasil penelitian di bidang Teknologi Informatika dan Komputer Terapan dengan e-ISSN: 2548-9828. Terdapat 3 artikel yang telah ditelaah secara substansial oleh tim editorial dan ...