JOURNAL OF APPLIED INFORMATICS AND COMPUTING
Vol. 8 No. 2 (2024): December 2024

A Comparison of Convolutional Neural Network (CNN) and Transfer Learning MobileNetV2 Performance on Spices Images Classification

Velarati, Khoirizqi (Unknown)
Sari, Christy Atika (Unknown)
Rachmawanto, Eko Hari (Unknown)



Article Info

Publish Date
12 Nov 2024

Abstract

This research was conducted to analyze the performance of the CNN algorithm without transfer learning in classifying spice images and compare it with the CNN algorithm using transfer learning on the MobileNetV2 architecture. This comparison aims to evaluate both methods' accuracy, efficiency, and overall performance and analyze the impact of transfer learning on classification results in the context of spices. The dataset consists of 1500 spice images divided into 10 classes, with each class of 150 images. In the first experiment, CNN without transfer learning resulted in 93% accuracy performance. For the second experiment using MobileNetV2, there was an increase in accuracy, reaching a value of 99% for all spice classes. The results of this study confirm that MobileNetV2 architecture significantly improves the accuracy and performance of spice classification compared to CNN without transfer learning, which can be recommended for spice image classification.

Copyrights © 2024






Journal Info

Abbrev

JAIC

Publisher

Subject

Computer Science & IT

Description

Journal of Applied Informatics and Computing (JAIC) Volume 2, Nomor 1, Juli 2018. Berisi tulisan yang diangkat dari hasil penelitian di bidang Teknologi Informatika dan Komputer Terapan dengan e-ISSN: 2548-9828. Terdapat 3 artikel yang telah ditelaah secara substansial oleh tim editorial dan ...