JOURNAL OF APPLIED INFORMATICS AND COMPUTING
Vol. 8 No. 2 (2024): December 2024

Implementation of AlexNet and Xception Architectures for Disease Detection in Orange Plants

Al Fatah, Venus (Unknown)
Romli, Moh. Ali (Unknown)



Article Info

Publish Date
20 Nov 2024

Abstract

Oranges are one of Indonesia's primary horticultural commodities, with production increasing each year. However, pest and disease infestations often go undetected, leading to significant reductions in crop yields. This study implements Convolutional Neural Network (CNN) technology to identify diseases in orange plants using two architectures: AlexNet and Xception. The implementation results show that the Xception architecture achieved a high accuracy of 96% after 100 training epochs, indicating its effectiveness in disease detection tasks. This research highlights the potential of integrating CNN technology, particularly the Xception model, into web-based systems for disease detection in orange plants. Such systems can assist farmers in maintaining crop health, improving productivity, and ensuring harvest quality.

Copyrights © 2024






Journal Info

Abbrev

JAIC

Publisher

Subject

Computer Science & IT

Description

Journal of Applied Informatics and Computing (JAIC) Volume 2, Nomor 1, Juli 2018. Berisi tulisan yang diangkat dari hasil penelitian di bidang Teknologi Informatika dan Komputer Terapan dengan e-ISSN: 2548-9828. Terdapat 3 artikel yang telah ditelaah secara substansial oleh tim editorial dan ...