Jurnal Ilmiah Multidisiplin Ilmu
Vol. 1 No. 5 (2024): Oktober : Jurnal Ilmiah Multidisiplin Ilmu (JIMI)

KLASTERISASI PENDIDIKAN SD UNTUK MENGETAHUI DAERAH DENGAN PENDIDIKAN TERENDAH MENGGUNAKAN ALGORITMA K-MEANS

Kevin Riyas Robbani (Unknown)
Zaehol Fatah (Unknown)



Article Info

Publish Date
31 Dec 2024

Abstract

Elementary education serves as the foundational stage in efforts to improve the overall quality of education in Indonesia. Identifying regions with the lowest levels of elementary education is essential for effectively targeting initiatives to enhance education quality. The K-Means clustering algorithm is employed to group regions based on specific indicators, such as the number of students, dropout rates, classrooms, teaching staff, school principals, and others. The objective of this method is to identify regions with the lowest levels of elementary education by pinpointing clusters of areas that require the most support and development. K-Means clustering operates by dividing data into several clusters based on the similarity of feature patterns. This process facilitates the identification of regional groups with varying priorities for support and development. The clustering analysis results reveal that from 39 datasets related to elementary education across various regions in Indonesia, three clusters were formed. Cluster 0 consists of 34 data points, Cluster 1 contains only 1 data point, and Cluster 2 comprises 4 data points.

Copyrights © 2024






Journal Info

Abbrev

jimi

Publisher

Subject

Other

Description

Jurnal Ilmiah Multidisiplin Ilmu (JIMI) dengan e-ISSN : 3047-2121, p-ISSN : 3047-2113, merupakan platform publikasi jurnal Karya suatu hasil penelitian orisinil atau tinjauan Pustaka yang ditulis oleh Dosen, mahasiswa dan atau Peneliti lainnya. Ruang lingkup karya yang diterbitkan mencakup ...