Journal of the Indonesian Mathematical Society
Vol. 30 No. 3 (2024): NOVEMBER

GROUP MEAN CORDIAL LABELING OF SOME QUADRILATERAL SNAKE GRAPHS

R N, Rajalekshmi (Unknown)
R, Kala (Unknown)



Article Info

Publish Date
08 Nov 2024

Abstract

Let G be a (p, q) graph and let A be a group. Let f : V (G) −→ A be a map. For each edge uv assign the label [o(f (u))+o(f (v)) / 2]. Here o(f (u)) denotes the order of f (u) as an element of the group A. Let I be the set of all integerslabeled by the edges of G. f is called a group mean cordial labeling if the following conditions hold: (1) For x, y ∈ A, |vf (x) − vf (y)| ≤ 1, where vf (x) is the number of vertices labeled with x. (2) For i, j ∈ I, |ef (i) − ef (j)| ≤ 1, where ef (i) denote the number of edges labeled with i. A graph with a group mean cordial labeling is called a group mean cordial graph. In this paper, we take A as the group of fourth roots of unity and prove that, Quadrilateral Snake, Double Quadrilateral Snake, Alternate Quadrilateral Snake and Alternate Double Quadrilateral Snake are groupmean cordial graphs.

Copyrights © 2024






Journal Info

Abbrev

JIMS

Publisher

Subject

Mathematics

Description

Journal of the Indonesian Mathematical Society disseminates new research results in all areas of mathematics and their applications. Besides research articles, the journal also receives survey papers that stimulate research in mathematics and their ...