Distributed Denial of Service (DDoS) attacks are a serious threat to computer network security. This study offers a comprehensive evaluation by considering accuracy, detection time, and model complexity in simulation scenarios. Using the CICDDoS2019 dataset, which includes modern attack variations and complete features, this research compares the effectiveness of Naïve Bayes (NB), Random Forest (RF), and Decision Tree (DT) algorithms in detecting DDoS attacks. The results show that RF achieves the highest accuracy (99.95%), while DT excels in recall (99.83%). These findings provide a foundation for developing hybrid ML-DL models to enhance real-time attack detection. However, limitations such as using a single dataset and offline simulations restrict the generalizability of results to real-world network conditions. This study highlights opportunities for more comprehensive future research in real-world scenarios.
Copyrights © 2025