Jurnal Teknik Informatika (JUTIF)
Vol. 5 No. 6 (2024): JUTIF Volume 5, Number 6, Desember 2024

COMPARATIVE ANALYSIS OF LSTM, BILSTM, GRU, CNN, AND RNN FOR DEPRESSION DETECTION IN SOCIAL MEDIA

Muhammad Huda, Alam (Unknown)
Shidik, Guruh Fajar (Unknown)
Praskatama, Vincentius (Unknown)



Article Info

Publish Date
28 Dec 2024

Abstract

The prevalence of mental health issues and the increasing use of social media provide an opportunity to leverage technology for early detection of depression. This study evaluates and compares five deep learning models, LSTM, BiLSTM, GRU, CNN, and RNN for detecting depressive tendencies from over 10,000 annotated social media messages. These models were trained on preprocessed data using standard techniques, including cleansing, tokenization, and padding. Evaluation metrics such as accuracy, precision, recall, and F1-score were utilized. BiLSTM emerged as the best-performing model with an accuracy of 98.45% and an F1-score of 96.37%, attributed to its bidirectional architecture for contextual analysis. In contrast, CNN achieved high precision (98.55%) but struggled with recall (15.14%), while RNN and GRU exhibited limitations in capturing complex patterns, with GRU showing no measurable performance. These findings establish BiLSTM as a robust tool for mental health monitoring. Future research could explore transformer-based models such as BERT or multilingual datasets for enhanced applicability.

Copyrights © 2024






Journal Info

Abbrev

jurnal

Publisher

Subject

Computer Science & IT

Description

Jurnal Teknik Informatika (JUTIF) is an Indonesian national journal, publishes high-quality research papers in the broad field of Informatics, Information Systems and Computer Science, which encompasses software engineering, information system development, computer systems, computer network, ...