The accurate classification of HIV/AIDS status is critical for effective diagnosis, treatment planning, and disease management. This study evaluates the performance of four deep learning models: Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) on a comprehensive clinical and laboratory dataset derived from the AIDS Clinical Trials Group Study 175. The dataset includes features such as demographic information, treatment history, and immune markers like CD4 and CD8 counts. To address class imbalance, the Synthetic Minority Oversampling Technique (SMOTE) was applied, followed by stratified 10-fold cross-validation to ensure robust evaluation. Each model's performance was assessed using metrics including accuracy, precision, recall, F1-score, and ROC-AUC. GRU emerged as the most effective model, achieving the highest accuracy (71.04%) and ROC-AUC (57.72%), demonstrating its robustness in handling sequential data. CNN and LSTM showed competitive performance, particularly in balancing precision and recall. However, all models faced challenges in recall, highlighting difficulties in identifying minority-class samples. The findings underscore the potential of GRU for HIV/AIDS classification while identifying limitations in current approaches to handling class imbalance. Future work will explore advanced architectures, such as attention mechanisms and hybrid models, to further improve sensitivity and robustness. This study contributes to the growing body of research on applying deep learning to healthcare, with implications for improving diagnostic accuracy and patient outcomes.
Copyrights © 2025