JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH)
Vol 6 No 2 (2025): Januari 2025

Performance Evaluation of Machine Learning Models for HIV/AIDS Classification

Airlangga, Gregorius (Unknown)



Article Info

Publish Date
31 Jan 2025

Abstract

Accurate and early diagnosis of HIV/AIDS is critical for effective treatment and reducing disease transmission. This study evaluates the performance of several machine learning models, including Logistic Regression, Decision Tree, Random Forest, Gradient Boosting, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naive Bayes, for classifying HIV/AIDS infection status. A dataset comprising 50,000 samples was used, and models were assessed based on accuracy, precision, recall, and F1 score using stratified ten-fold cross-validation to ensure robust evaluation. The results reveal significant trade-offs between sensitivity and specificity across the models. Gradient Boosting achieved the highest accuracy (70.85%) and precision (57.81%), making it suitable for confirmatory testing where minimizing false positives is critical. Conversely, Naive Bayes demonstrated the highest recall (57.99%) and F1 score (51.04%), emphasizing its effectiveness in early-stage diagnostics where sensitivity is paramount. SVM exhibited the highest precision (59.87%) but struggled with recall (11.28%), reflecting its conservative nature in classifying positive cases. These findings underscore the importance of selecting models tailored to specific diagnostic objectives. While Naive Bayes is ideal for comprehensive screening programs, Gradient Boosting and SVM are better suited for confirmatory testing. This research provides valuable insights into the strengths and limitations of machine learning models for medical diagnostics, paving the way for developing more robust, hybrid approaches to optimize sensitivity and specificity in HIV/AIDS classification.

Copyrights © 2025






Journal Info

Abbrev

josh

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Artikel yang dimuat melalui proses Blind Review oleh Jurnal JOSH, dengan mempertimbangkan antara lain: terpenuhinya persyaratan baku publikasi jurnal, metodologi riset yang digunakan, dan signifikansi kontribusi hasil riset terhadap pengembangan keilmuan bidang teknologi dan informasi. Fokus Journal ...