This study evaluates the performance of Stacked Sparse Autoencoder (SSAE) combined with Support Vector Machine (SVM) against a standard SVM for classification tasks. We assessed both models using accuracy, precision, sensitivity, and F1 score. The SSAE Support Vector Machine significantly outperformed the standard SVM, achieving an accuracy of 89% compared to 37%. SSAE also achieved higher precision (87% vs. 75%) and sensitivity (89% vs. 37%), with an F1 score of 88% versus 36% for the standard SVM. These results indicate that SSAE enhances the model’s ability to capture complex patterns and provide reliable predictions. This study highlights the effectiveness of SSAE in improving classification performance, suggesting further research with larger datasets and additional optimization techniques to maximize model efficiency
Copyrights © 2025