The rapid growth of the culinary business has made business competition in this field increasingly tight, so a strategy is needed to increase food and beverage sales patterns. Bonjur Cafe Resto serves many food and beverage menus, but business actors need to try to produce product innovations in order to provide satisfactory service to customers. In this condition, a data processing technique is needed to determine customer segmentation and menu recommendations at Bonjur Cafe Resto. The analysis method used is RFM Analysis by analyzing customer behavior, analyzing purchase transaction data consisting of Recency Frequency Monetary (RFM) attributes and data mining techniques with the Apriori algorithm, where this algorithm is used to determine the most frequently appearing data set (frequent itemset). The results of this study are grouped into five categories of customers based on their purchasing behavior and association rules are formed with predetermined parameters, support 28% and confidence 70%. This can later be a recommendation for a menu combination from the data that has been collected and applied using the apriori algorithm so that it is expected to be used for service evaluation and be able to increase customer satisfaction so that Bonjur Cafe Resto can develop better
Copyrights © 2024