Packaging industries fabricate and transport products in wrapped, sealed, and cushioned containers and boxes on roads, often through fossil-fuelled vehicles that emit carbons. Thus, decarbonization and net zero emission drive are compelling for these vehicles. This paper proposes a robust green logistics interaction model for monitoring and reducing exhaust pipe emissions in an uncertain environment. It uses a hybrid method known as fuzzy-0/1-KDP-PROMETHEE (Fuzzy-0/1 Knapsack dynamic programming-Preference Ranking Organization Method for Enrichment Evaluation) approach to concurrently reduce uncertainty, optimize the capacity of the knapsack and establish the preferred option among the parameters of green logistic. Both PROMETHEE I and II were introduced and tested using logistics data from an Indian environment based on secondary data. The method works by first reducing the effect of uncertainty on the model outcomes. This was achieved by establishing the output space as the fuzzy state, creating fuzzy rules, and mapping degrees to rules. Then, the degrees are used to maximize, ensuring that the weighted sum is not greater than the capacity of the Knapsack. The outcome is then regarded as the element of the green logistics exhaust emission process. The results obtained from the analysis, using the replacement of fuzzy expert (triangular) with fuzzy extent (trapezoidal), fuzzy geometric mean (triangular), and fuzzy geometric mean (trapezoidal) reveal that the fuzzy-0/1-KDP-PROMETHEE method adequately represents the score obtained using the data set from the exhaust emissions.
Copyrights © 2024