JOIV : International Journal on Informatics Visualization
Vol 9, No 1 (2025)

An Improved Okta-Net Convolutional Neural Network Framework for Automatic Batik Image Classification

Elvitaria, Luluk (Unknown)
Ahmad, Ezak Fadzrin (Unknown)
Samsudin, Noor Azah (Unknown)
Ahmad Khalid, Shamsul Kamal (Unknown)
Salamun, - (Unknown)
Indra, Zul (Unknown)



Article Info

Publish Date
31 Jan 2025

Abstract

Batik is one of Indonesia's most important cultural arts and has received recognition from UNESCO. Batik has high artistic and historical value with a variety of patterns. Currently, Indonesia has 5,849 batik motifs which are generally classified based on shape, color, motif and symbolic meaning. The diversity of batik motifs makes it difficult for ordinary people to fully recognize them. This paper intends to develop an automatic framework for classifying batik motifs as a solution to overcome this issue. To develop this classification automation framework, the paper proposes a new architecture based on deep learning, which is named Okta-net. The architecture consists of 8 convolutional layers with separate convolution operations (SeparableConv2D). The output of the last convolution block will be fed to the fully connected layer using global average pooling. Meanwhile, in developing a deep learning model to classify batik image patterns, a dataset of 5 batik classes (motifs) was organized, consisting of 4,284 batik images. Through a series of experiments carried out, the proposed Okta-Net architecture succeeded in achieving satisfactory results with a validation accuracy of 93.17%, Precision of 91.60%, Recall of 92.28%, F-1 Score of 91.54%, and a loss of just 0.12%. Thus, it can be concluded that Okta-Net architecture can help preserve Indonesia's batik cultural heritage by accurate batik motif’s classification. Apart from that, based on a comparison of research outcomes, Okta-Net outperformed most of earlier studies, the majority of which had an accuracy of below 90%.

Copyrights © 2025






Journal Info

Abbrev

joiv

Publisher

Subject

Computer Science & IT

Description

JOIV : International Journal on Informatics Visualization is an international peer-reviewed journal dedicated to interchange for the results of high quality research in all aspect of Computer Science, Computer Engineering, Information Technology and Visualization. The journal publishes state-of-art ...