This research aims to develop an LSTM-based model to help counselors analyze depressive symptoms in students based on their life stories. Depression often occurs among students, which can affect their lives. However, counselling can overcome these mental problems. In order to support the Indonesian government's programs in the field of mental health, concrete steps are needed. One concrete effort is to prevent children from experiencing depression. Depression can be recognized early through a counselling approach. Currently, counselling can be done using digital counselling technology. Therefore, a reliable model is needed to help counsellors. This research used 2,551 tweets about someone's life story from 2,581 datasets. ANN method with LSTM (Long Short-Term Memory) architecture. This counselling is effective in helping individuals resolve psychological and emotional problems, especially depression. The advantage of LSTM is that it can delete data that is no longer relevant. This method effectively processes, predicts, and classifies data based on a certain time sequence. The dataset was taken from Twitter(X) and then validated by experts before being trained with the model. As a result, the model can recognize the depression levels with a test accuracy of 86%. This research has implications in psychology regarding cases of student mental health in realizing the vision of Indonesia in 2045.
Copyrights © 2025