International Journal of Electrical and Computer Engineering
Vol 15, No 2: April 2025

Automated tomato leaf disease recognition using deep convolutional networks

Sohel, Amir (Unknown)
Rahman, Md Mizanur (Unknown)
Hasan, Md Umaid (Unknown)
Islam, MD Kafiul (Unknown)
Rukhsara, Lamia (Unknown)
Rabeya, Tapasy (Unknown)



Article Info

Publish Date
01 Apr 2025

Abstract

Agriculture is essential for the entire global population. An advanced, robust, and empirically sound agriculture sector is essential for nourishing the global population. Various leaf diseases cause financial hardships for farmers and related businesses. Early identification of foliar diseases in crops would greatly help farmers, leading to a substantial increase in agricultural productivity. The tomato is a widely recognized and nourishing food that is easily accessible and highly favored by farmers. Early diagnosis of tomato leaf diseases is crucial to maximize tomato crop production. This study aims to utilize a deep learning approach to accurately detect and classify damaged leaves and disease patterns in tomato leaf images. By employing a substantial quantity of deep convolutional network models, we achieved a high level of precision in diagnosing the condition. The dataset used in our study work is a self-contained dataset obtained by direct observation of tomato fields in rural areas of Bangladesh. It consists of four classes: healthy, black mold, grey mold, and powdery mildew. In this study work, we utilized various image pre-processing techniques and applied VGG16, InceptionV3, DenseNet121, and AlexNet models. Our results showed that the DenseNet121 model attained the higher accuracy of 97%. This discovery guarantees accurate detection of tomato diseases in a rapid manner, ushering in a new agricultural revolution.

Copyrights © 2025






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...