International Journal of Electrical and Computer Engineering
Vol 15, No 2: April 2025

A novel technique for selecting financial parameters and technical indicators to predict stock prices

bagalkot, Sneha S. (Unknown)
H. A., Dinesha (Unknown)
Naik, Nagaraj (Unknown)



Article Info

Publish Date
01 Apr 2025

Abstract

Stock price predictions are crucial in financial markets due to their inherent volatility. Investors aim to forecast stock prices to maximize returns, but accurate predictions are challenging due to frequent price fluctuations. Most literature focuses on technical indicators, which rely on historical data. This study integrates both financial parameters and technical indicators to predict stock prices. It involves three main steps: identifying essential financial parameters using recursive feature elimination (RFE), selecting quality stocks with a decision tree (DT), and forecasting stock prices using artificial neural networks (ANN), deep neural networks (DNN), and extreme gradient boosting (XGBoost). The models’ performance is evaluated with root mean square error (RMSE) and mean absolute error (MAE) scores. ANN and DNN models showed superior performance compared to the XGBoost model. The experiments utilized Indian stock data.

Copyrights © 2025






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...