SKANIKA: Sistem Komputer dan Teknik Informatika
Vol 8 No 1 (2025): Jurnal SKANIKA Januari 2025

PENGELOMPOKAN WILAYAH INDONESIA BERDASARKAN KOMPONEN INDEKS PEMBANGUNAN MANUSIA DENGAN PENDEKATAN ALGORITMA K-MEANS CLUSTERING

Saputra, Nur Rukhan (Unknown)
Muflih, Ghufron Zaida (Unknown)



Article Info

Publish Date
30 Jan 2025

Abstract

The Human Development Index (HDI) plays a crucial role in measuring the well-being of a region's population, offering a comprehensive perspective through various indicators, including economic factors such as Gross Domestic Product (GDP). This study focuses on clustering regions in Indonesia based on HDI components using the K-Means Clustering method. The clustering divides the regions into three groups: low, medium, and high clusters, considering dimensions of education, health, and standard of living. The data used includes indicators such as expected years of schooling, mean years of schooling, life expectancy, average monthly income, and per capita expenditure. The Davies-Bouldin Index (DBI) is employed as an evaluation method to measure the quality of cluster separation. The study reveals that K-Means successfully categorizes the regions into three clusters with a DBI value of 1.17, reflecting good cluster separation. This clustering provides valuable insights into the distribution of human development across Indonesia and is expected to assist policymakers in devising effective strategies to improve well-being in each identified cluster.

Copyrights © 2025






Journal Info

Abbrev

SKANIKA

Publisher

Subject

Computer Science & IT Control & Systems Engineering Engineering

Description

SKANIKA: Sistem Komputer dan Teknik Informatika adalah media publikasi online hasil penelitian yang diterbitkan oleh Program Studi Sistem komputer dan Teknik Informatika, Fakultas Teknologi Informasi, Universitas Budi Luhur. Scope atau Topik Jurnal: Kriptografi, Steganografi, Sistem Pakar / ...