Control Systems and Optimization Letters
Vol 3, No 1 (2025)

Understanding Generative Adversarial Networks (GANs): A Review

Purwono, Purwono (Unknown)
Wulandari, Annastasya Nabila Elsa (Unknown)
Ma'arif, Alfian (Unknown)
Salah, Wael A. (Unknown)



Article Info

Publish Date
07 Feb 2025

Abstract

Generative Adversarial Networks (GANs) is an important breakthrough in artificial intelligence that uses two neural networks, a generator and a discriminator, that work in an adversarial framework. The generator generates synthetic data, while the discriminator evaluates the authenticity of the data. This dynamic interaction forms a minimax game that produces high-quality synthetic data. Since its introduction in 2014 by Ian Goodfellow, GAN has evolved through various innovative architectures, including Vanilla GAN, Conditional GAN (cGAN), Deep Convolutional GAN (DCGAN), CycleGAN, StyleGAN, Wasserstein GAN (WGAN), and BigGAN. Each of these architectures presents a novel approach to address technical challenges such as training stability, data diversification, and result quality. GANs have been widely applied in various sectors. In healthcare, GANs are used to generate synthetic medical images that support diagnostic development without violating patient privacy. In the media and entertainment industry, GANs facilitate the enhancement of image and video resolution, as well as the creation of realistic content. However, the development of GANs faces challenges such as mode collapse, training instability, and inadequate quality evaluation. In addition to technical challenges, GANs raise ethical issues, such as the misuse of the technology for deepfake creation. Legal regulations, detection tools, and public education are important mitigation measures. Future trends suggest that GANs will be increasingly used in text-to-image synthesis, realistic video generation, and integration with multimodal systems to support cross-disciplinary innovation.

Copyrights © 2025






Journal Info

Abbrev

csol

Publisher

Subject

Aerospace Engineering Automotive Engineering Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

Control Systems and Optimization Letters is an open-access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of control and optimization, rapidly enabling a safe and sustainable interconnected human society. Control Systems and Optimization Letters ...