Equilibrium Journal of Chemical Engineering
Vol 8, No 2 (2024): Volume 8, No 2 December 2024--Online First

Optimization of Bio-lubricant Produced from Non-edible Jatropha curcas Seed Oil

David Emoefe Rockson-itiveh (Delta State University of Science and technology)
alexander Oghenereke Efih (Delta State University of Science and Technology, Ozoro)
Mabel Keke (Delta State University of Science and Technology, Ozoro)
Fabian Chidiebere Ozioko (Delta State University of Science and Technology, Ozoro)



Article Info

Publish Date
28 Oct 2024

Abstract

Abstract. This paper presents the production and optimization of a bio-lubricant derived from non-edible Jatropha plant seed oil. Plant oil-based lubricants offer significant environmental benefits and are derived from renewable sources, making them an attractive alternative to conventional lubricants. They provide a potential solution for sustainable and low-cost feedstock for fuel oil and its derivatives without competing with food uses, as Jatropha oil contains toxic esters unsuitable for human consumption. Jatropha seed oil was extracted using a Soxhlet apparatus fitted with a heating mantle. A total of 500 g of the extracted oil was esterified in a round-bottom flask glass reactor with 25 wt% methanol and 1.0 wt% H₂SO₄ as a catalyst, reducing free fatty acids (FFA) to approximately 1%. The esterified oil was then subjected to transesterification in a reactor preheated to 60°C. A mixture of 1.0 wt% NaOH and methanol at a 6:1 ratio was added while stirring at 300 rpm for a reaction time of 90 minutes. The transesterification process was optimized using a 23 response surface methodology (RSM) experimental design. This design evaluated the effects of temperature (112.16°C to 160.00°C), reaction time (1.81 to 5.00 hours), and catalyst concentration (0.73% to 1.73% w/w) at a constant mole ratio of JME to TMP of 3.9:1 under vacuum conditions. The results revealed that the optimal conditions for bio-lubricant synthesis were a temperature of 130°C, a reaction time of 3 hours, and a catalyst concentration of 0.8% w/w. A second-order quadratic model was developed to predict the yield of Jatropha curcas bio lubricant based on the process variables. The model predicted a yield of 88.74% with a desirability of 0.9739 and demonstrated a high coefficient of determination (R²) of 0.9739, indicating strong predictive accuracy Keywords:Bio-lubricant, Jatropha, Esterification, Seed Oil

Copyrights © 2024






Journal Info

Abbrev

equilibrium

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry Energy Engineering Materials Science & Nanotechnology

Description

Equilibrium Journal of Chemical Engineering (EJChE) publishes communication articles, original research articles and review articles in :. Material Development Biochemical Process Exploration and Optimization Chemical Education Chemical Reaction Kinetics and Catalysis Designing, Modeling, and ...