Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
Vol. 7 No. 1 (2025): February

Implementation of Copeland Method on Wrapper-Based Feature Selection Using Random Forest For Software Defect Prediction

Agustia Kuspita Aryanti (Universitas Lambung Mangkurat)
Rudy Herteno (Universitas Lambung Mangkurat)
Fatma Indriani (Universitas Lambung Mangkurat)
Radityo Adi Nugroho (Universitas Lambung Mangkurat)
Muliadi Muliadi (Universitas Lambung Mangkurat)



Article Info

Publish Date
24 Feb 2025

Abstract

Software Defect Prediction is crucial to ensure software quality. However, high-dimensional data presents significant challenges in predictive modelling, especially identifying the most relevant features to improve model performance. Therefore, efforts are needed to address these issues, and one is to apply feature selection methods. This study introduces a new approach by applying the Copeland ranking method, which aggregates feature weights from multi-wrapper methods, including Recursive Feature Elimination (RFE), Boruta, and Custom Grid Search, using 12 NASA MDP datasets. The study also applies Random Forest classification and evaluates the model using AUC and t-Test. In addition, this study also compares the accuracy and precision values produced by each method. The results consistently show that the Copeland ranking method produces superior results compared to other ranking methods. The average AUC value obtained from the Copeland ranking method is 0.7496, higher than the Majority ranking method with an average AUC of 0.7416 and the Optimal Rank ranking method with an average AUC of 0.7343. These findings confirm that applying the Copeland ranking method in wrapper-based feature selection can enhance classification performance in software defect prediction using Random Forest compared to other ranking methods. The strength of the Copeland method lies in its ability to integrate rankings from various feature selection approaches and identify relevant features. The findings of this research demonstrate the potential of the Copeland ranking method as a reliable tool for ranking features obtained from various wrapper-based feature selection techniques. The implementation of this approach contributes to improved software defect prediction and provides new insights for the development of ranking methods in the future

Copyrights © 2025






Journal Info

Abbrev

ijeeemi

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Health Professions Materials Science & Nanotechnology

Description

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics (IJEEEMI) publishes peer-reviewed, original research and review articles in an open-access format. Accepted articles span the full extent of the Electronics, Biomedical, and Medical Informatics. IJEEEMI seeks to ...