IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 2: April 2025

Schedule-free optimization of the transformers-based time series forecasting model

Yemets, Kyrylo (Unknown)
Greguš, Michal (Unknown)



Article Info

Publish Date
01 Apr 2025

Abstract

The task of time series forecasting is important for many scientific, technical, and applied fields, such as finance, economics, meteorology, medicine, transportation, and telecommunications. Existing methods, such as autoregressive models and moving average models, have their limitations, especially when working with non-stationary and seasonal data. In this work, the basic architecture of transformers was modified to solve time series forecasting problems. Additionally, state-of-the-art optimizers were investigated and experimentally compared, including AdamW, stochastic gradient descent (SGD), and new methods such as schedule-free SGD and schedule-free AdamW, to improve forecasting accuracy and the efficiency of the training procedure for the transformer architecture. Modeling was conducted on meteorological data that included seasonal time series. The accuracy evaluation of the optimization methods studied in this work was performed using a range of different performance indicators. The results showed that the new optimization methods significantly improve forecasting accuracy compared to the use of traditional optimizers.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...