IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 2: April 2025

Enhancing facial recognition accuracy through feature extractions and artificial neural networks

Kusnadi, Adhi (Unknown)
Pane, Ivranza Zuhdi (Unknown)
Tobing, Fenina Adline Twince (Unknown)



Article Info

Publish Date
01 Apr 2025

Abstract

Facial recognition is a biometric system used to identify individuals through faces. Although this technology has many advantages, it still faces several challenges. One of the main challenges is that the level of accuracy has yet to reach its maximum potential. This research aims to improve facial recognition performance by applying the discrete cosine transform (DCT) and Gaussian mixture model (GMM), which are then trained with backward propagation of errors (backpropagation) and convolutional neural networks (CNN). The research results show low DCT and GMM feature extraction accuracy with backpropagation of 4.88%. However, the combination of DCT, GMM, and CNN feature extraction produces an accuracy of up to 98.2% and a training time of 360 seconds on the Olivetti Research Laboratory (ORL) dataset, an accuracy of 98.9% and a training time of 1210 seconds on the Yale dataset, and 100% accuracy and training time 1749 seconds on the Japanese female facial expression (JAFFE) dataset. This improvement is due to the combination of DCT, GMM, and CNN's ability to remove noise and study images accurately. This research is expected to significantly contribute to overcoming accuracy challenges and increasing the flexibility of facial recognition systems in various practical situations, as well as the potential to improve security and reliability in security and biometrics.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...