This study aims to improve the school type grouping model at the Kebon Kelapa Al-Ma'rifah Foundation, Cirebon Regency, using the K-Means algorithm. Data-based grouping is very important in supporting efficient education management, especially in environments that have various types of schools such as Madrasah Aliyah (MA), Vocational High School (SMK), Madrasah Tsanawiyah (MTs), and Madrasah Ibtidaiyah (MI). The data used comes from the New Student Registration (PPDB) dataset for the 2023–2024 school year, with demographic attributes such as name, place of birth, gender, and time of school entry. The evaluation of clustering quality was carried out using the Davies-Bouldin Index (DBI) to determine the optimal number of clusters. The results show that the optimal number of clusters is K=5 with the lowest DBI value of 0.201, which results in compact and well-separated clusters. The implementation of the K-Means algorithm helps the foundation understand the distribution pattern of students based on attributes such as gender, region, and entry time. This research provides practical benefits, including more targeted resource allocation, improved quality of education, and efficiency in school management. In addition, this research contributes to the development of data mining models in the education sector and opens up opportunities for the exploration of additional attributes such as academic achievement and socioeconomic conditions. Further research is suggested to use alternative algorithms such as K-Medoids or DBSCAN.
Copyrights © 2025