The Indonesian film industry is expanding rapidly, but understanding audience preferences remains a significant challenge for producers. This study aims to cluster Indonesian films by genre and synopsis using the K-Means algorithm to aid in marketing strategies and content development. The dataset comprises 1,271 Indonesian film entries, including attributes like release year, genre, synopsis, and user ratings. The research follows the Knowledge Discovery in Databases (KDD) framework, which involves data selection, preprocessing, transformation, clustering with K-Means, and evaluation using the Elbow method to identify the optimal number of clusters. The results show that the K-Means algorithm successfully grouped the films into three clusters: drama, horror, and others. The analysis indicates that drama films dominate the high-rating cluster, while horror films are more commonly found in the low-rating category. The use of Principal Component Analysis (PCA) in the visualization aids in interpreting the clustering results, providing a clearer view of the data distribution. These findings highlight the potential for improving film production strategies by aligning content with audience preferences. By understanding genre patterns and ratings, producers can make more informed decisions in marketing and content development.
Copyrights © 2025