Journal of Computing Theories and Applications
Vol. 2 No. 3 (2025): JCTA 2(3) 2025

Feature Fusion with Albumentation for Enhancing Monkeypox Detection Using Deep Learning Models

Pratama, Nizar Rafi (Unknown)
Setiadi, De Rosal Ignatius Moses (Unknown)
Harkespan, Imanuel (Unknown)
Ojugo, Arnold Adimabua (Unknown)



Article Info

Publish Date
21 Feb 2025

Abstract

Monkeypox is a zoonotic disease caused by Orthopoxvirus, presenting clinical challenges due to its visual similarity to other dermatological conditions. Early and accurate detection is crucial to prevent further transmission, yet conventional diagnostic methods are often resource-intensive and time-consuming. This study proposes a deep learning-based classification model by integrating Xception and InceptionV3 using feature fusion to enhance performance in classifying Monkeypox skin lesions. Given the limited availability of annotated medical images, data augmentation was applied using Albumentation to improve model generalization. The proposed model was trained and evaluated on the Monkeypox Skin Lesion Dataset (MSLD), achieving 85.96% accuracy, 86.47% precision, 85.25% recall, 78.43% specificity, and an AUC score of 0.8931, outperforming existing methods. Notably, data augmentation significantly improved recall from 81.23% to 85.25%, demonstrating its effectiveness in enhancing sensitivity to positive cases. Ablation studies further validated that augmentation increased overall accuracy from 82.02% to 85.96%, emphasizing its role in improving model robustness. Comparative analysis with other models confirmed the superiority of our approach. This research enhances automated Monkeypox detection, offering a robust and efficient tool for low-resource clinical settings. The findings reinforce the potential of feature fusion and augmentation in improving deep learn-ing-based medical image classification, facilitating more reliable and accessible disease identification.

Copyrights © 2025






Journal Info

Abbrev

jcta

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Journal of Computing Theories and Applications (JCTA) is a refereed, international journal that covers all aspects of foundations, theories and the practical applications of computer science. FREE OF CHARGE for submission and publication. All accepted articles will be published online and accessed ...