Jurnal Tekinkom (Teknik Informasi dan Komputer)
Vol 7 No 2 (2024)

KINERJA ALGORITMA BACKPROPAGATION DAN RNN DALAM PREDIKSI BEBAN JARINGAN

Annisah, Wulan Nur (Unknown)
Harani, Nisa Hanum (Unknown)
Habibi, Roni (Unknown)



Article Info

Publish Date
31 Dec 2024

Abstract

Bandwidth allocation optimization is crucial to ensure optimal network performance and user satisfaction. This research aims to identify the best machine learning algorithm between backpropagation and recurrent neural network (RNN) in predicting network load, using two different datasets. The main issue addressed is how to choose the right algorithm for network load prediction to optimize bandwidth allocation. The CRISP-DM methodology was used as the research framework, with four evaluation metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The results showed that the backpropagation algorithm provided the best performance on the data with the lowest evaluation matrix: MAE 0.0203, MSE 0.0007, RMSE 0.0281, and MAPE 20%. In conclusion, the backpropagation algorithm is more suitable for predicting bandwidth requirements compared to RNN based on the evaluation metrics used, making it reliable for bandwidth allocation optimization.

Copyrights © 2024






Journal Info

Abbrev

Tekinkom

Publisher

Subject

Computer Science & IT

Description

Jurnal TEKINKOM merupakan jurnal yang dimaksudkan sebagai media terbitan kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai isu Ilmu - ilmu komputer dan sistem informasi, seperti : Pemrograman Jaringan, Jaringan Komputer, Teknik Komputer, Ilmu Komputer/Informatika, Sistem ...