International Journal of Advances in Intelligent Informatics
Vol 11, No 1 (2025): February 2025

Advanced deep learning techniques for sentiment analysis: combining Bi-LSTM, CNN, and attention layers

Mirdan, Asmaa Sami (Unknown)
Buyrukoglu, Selim (Unknown)
Baker, Mohammed Rashad (Unknown)



Article Info

Publish Date
28 Feb 2025

Abstract

Online platforms enhance customer engagement and provide businesses with valuable data for predictive analysis, critical for strategic sales forecasting and customer relationship management. This study explores in depth the potential of sentiment analysis (SA) to enhance sales forecasting and customer retention for small and large businesses. We collected a large dataset of product review tweets, representing a rich consumer sentiment source. We developed an artificial neural network based on a dataset of product review tweets that captures both positive and negative sentiments. The core of our model is Bi-LSTM (Bidirectional Long Short-Term Memory) architecture, enhanced by an attention mechanism to capture relationships between words and emphasize key terms. Then, a one-dimensional convolutional neural network with 64 filters of size 3x3 is applied, followed by Average_Max_Pooling to reduce the feature map. Finally, two dense layers classify the sentiment as positive or negative. This research provides significant benefits and contributions to sentiment analysis by accurately identifying consumer sentiment in product review tweets. The proposed model that integrated Bi-LSTM with attention mechanism and CNN detects negative sentiment with a precision of 0.97, recall of 0.98, and F1-score of 0.98, allowing companies to address customer concerns, improving satisfaction and brand loyalty proactively. In addition, the proposed model presents a better sentiment classification on average for both positive and negative sentiments, and accuracy (96%) compared to the other baselines. It ensures high-quality input data by reducing noise and inconsistencies in product review tweets. Moreover, the dataset collected in this study serves as a valuable benchmark for future research in sentiment analysis and predictive analytics.

Copyrights © 2025






Journal Info

Abbrev

IJAIN

Publisher

Subject

Computer Science & IT

Description

International journal of advances in intelligent informatics (IJAIN) e-ISSN: 2442-6571 is a peer reviewed open-access journal published three times a year in English-language, provides scientists and engineers throughout the world for the exchange and dissemination of theoretical and ...