Dalam kehidupan modern saat ini banyak masyarakat menginginkan kepemilikan atas suatu barang dengan jasa pinjaman dana atau lebih dikenal dengan istilah kredit. Kondisi seperti ini memungkinkan berkembangnya perusahaan jasa keuangan dengan berbagai macam penawaran pembiayaan untuk barang impian dari nasabah. Sayangnya dari hasil penelitian sebelumnya banyak nasabah tergolong dalam klasifikasi kredit macet. Hal ini membuat berbagai perusahaan jasa keuangan berpikir keras untuk mengurangi kerugian atas banyaknya kredit macet. Salah satu penanggulangan awal yang dapat dilakukan adalah dengan melakukan klasifikasi calon nasabah menggunakan sebuah perhitungan algoritmik dengan perbandingan nasabah yang pernah tercatat sebelumnya. Beberapa model klasifikasi banyak digunakan. Salah satu yang terbaik adalah menggunakan metode naive bayes. Metode ini memungkinkan perhitungan probabilitas dari setiap atribut yang adaelitian ini menciptakan sebuah aplikasi pendukung keputusan persetujuan kredit dengan menggunakan algoritma naive bayes. Hsistem dapat menjadi pendukuputusan atas persetujuan pemberian kredit terhadap nasabah. Sistem ini tidak mengikat hasil akhir klasifikasi untuk pembiayaan nasabah karena keputusan akhir adalah hak dari manajerial perusahaan penyedia pembiayaan.
Copyrights © 2018